C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name: Number Theory

Subject Code: 5SC04NUT1		Branch: M.Sc. (Mathematics)	
Semester: 4	Date: 21/09/2022	Time: 02:30 To 05:30	Marks: 70

Instructions:

Q-2

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Attempt the following questions. Q-1

- **a.** Calculate $\phi(16)$.
- **b.** Check whether 28 is a perfect number or not.
- c. If n = 18, then find $\tau(n)$.

Attempt all questions.

- **d.** Findlcm(*a*, *b*) if $a = 2^{2} \cdot 3^{1} \cdot 5^{0}$, $b = 2^{1} \cdot 3^{1} \cdot 5^{1}$.
- e. If gcd(a, n) = 1, then the linear congruence $ax \equiv b \pmod{n}$ has a unique solution modulo *n*. (True/False)
- **f.** If $ca \equiv cb \pmod{n}$ and gcd(c, n) = 1, then $a \equiv b \pmod{n}$. (True/False)
- **g.** If p is a prime and p|ab, then p|a or p|b. (True/False)

Q-2 Attempt all questions.

A.	State Chinese remainder theorem. Solve the system of three congruence	06	
	$x \equiv 1 \pmod{3}, x \equiv 2 \pmod{5}, x \equiv 3 \pmod{7}.$		
T		~ ~	

- **B.** Prove that given integers a and b, with b > 0, there exist unique integers q **06** and *r* satisfying a = qb + r, $0 \le r < b$.
- C. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then show that 02 $a + c \equiv b + d \pmod{n}$.

OR

(14)

(07)

(14)

- **A.** Prove that every positive integer greater than one can be express uniquely 06 as a product of prime, up to the order of the factor. **B.** In usual notations, prove that lcm(a, b) gcd(a, b) = ab. 06
- C. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then show that 02 $ac \equiv bd \pmod{n}$.

0.2			(14)		
Q-3		Attempt all questions.	(14)		
	А. В.	Define: Mobious function. Show that Mobious function is multiplicative. State and prove Euclid's lemma.	04 04		
		Prove that if $k > 0$, thengcd $(ka, kb) = k \operatorname{gcd}(a, b)$.	03		
		Find the highest power of 3 dividing 1000!.	03		
	OR				
Q-3		Attempt all questions.	(14)		
	A.	Show that the functions τ and σ are both multiplicative functions.	04		
	В.	Computegcd(26,118) and express it in the form $26x + 118y$, where $x, y \in \mathbb{Z}$.	04		
	C.	Show that $\left[\frac{[x]}{n}\right] = \left[\frac{x}{n}\right]$ if <i>n</i> is a positive integer.	03		
		Prove that 41 divides $2^{20} - 1$.	03		
	υ.	$10^{\circ} \text{c} \text{ mat } 4^{\circ} \text{t} \text{t} \text{t} \text{t} \text{t} \text{s} \text{s}^{2} = 1.$	05		
		SECTION – II			
Q-4		Attempt the following questions.	(07)		
	a.	Find two primitive roots of 10.			
	b.	Write Pell's equation.			
	c.	Define: Periodic continued fraction.			
	d.	Every Euclidean quadratic field has unique factorization property. (True/False)			
	e.	If $n \ge 1$ and $gcd(a, n) \ne 1$, then $a^{\phi(n)} \equiv 1 \pmod{n}$. (True/False)			
	f.	A linear Diophantine equation $12x + 8y = 199$ has no solution.			
	a	(True/False) Define: Algebraic number.			
	g.	Define. Algeorate number.			
Q-5		Attempt all questions.	(14)		
	A.	Express the rational number $\frac{19}{51}$ in finite simple continue fraction.	02		
	B.	Solve the linear Diophantine equation $525 x + 231y = 42$.	05		
	C.	State and prove Wilson's theorem.	07		
o -		OR			
Q-5		Attempt all questions.	(14)		
	A.	Find first three positive solution of the equation $x^2 - 7y^2 = 1$.	07		
	В.	State and prove Lagrange's theorem.	07		
Q-6		Attempt all questions.	(14)		
	А.	Find order of 2modulo 7.	02		
	B.	Compute the convergents of the simple continued fraction [1; 2,3,3,2,1].	05		
	C.	Determine the infinite continued fraction representation of irrational $\sqrt{22}$	07		
		number $\sqrt{23}$.			
Q-6		OR Attempt all questions.	(14)		
₹v	Δ	Find a primitive root modulo 4.	02		
	л. В.	Determine the unique irrational number represented by the infinite	02		
		continued fraction $x = [3; 6, \overline{1,4}]$.			
	C.	State and prove the Fermat's last theorem.	07		
		SH UNIV			

